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The objective of ocean color data merger is to create a consistent series of systematic
ocean color measurements from multi-instrument, multi-platform and multi-year
observations based on accurate and uniform calibration and validation over the lifetime of
the measurement.

The most obvious benefit of data merger is improvement in spatial and temporal ocean
color coverage. Single sensor daily coverage is severely limited by gaps between
consecutive swaths and gaps caused by clouds, sun glint and other phenomena which
hinder the extraction of ocean color (Gregg et al., 1998; Gregg and Woodward, 1998).
For example, merged data from three global satellite sensors, MODIS on the Terra and
Aqua platforms and SeaWiFS, provide only about 40% of global ocean and inland-water
coverage at 9km resolution within a single day. The other critical benefit is an increase in
statistical confidence in extracted bio-optical parameters. Merger algorithms can utilize
sensor-varying attributes, such as spectral, spatial, temporal, and ground coverage
characteristics. Merger is the ultimate tool for the creation of ocean-color climate data
records.

There are many difficulties associated with ocean color data merger. Sensors have
varying designs and characteristics. There are disparate instrument calibrations, data
processing algorithms, and validation accuracies. The same ocean color quantities can be
derived using different spectral bands and different algorithms which may cause
dissimilarities in mission standard products. Discrepancies in sensor characteristics,
calibrations, and data processing create relationships between data products from
different instruments which may show temporal trends and dependencies on sensor
observation conditions. These relationships may also be noisy, indefinite and sometimes
contradictory. Data especially susceptible to noisiness are those contaminated by clouds,
dust, other types of turbid atmosphere, coastal waters, and mixed pixel representations.
Another type of ambiguity arises from the fact that sensors are flown over the same
regions at different times of a day. Natural changes in bio-optical conditions of the global
ocean occurring over these time spans are hard to establish because they are difficult to
discriminate from instrument and calibration artifacts.

Detailed objectives for the creation of a consistent series of multi-instrument and multi-
year ocean color observations and related ocean Climate Data Records have not yet been
defined. An objective way to assess accuracy of ocean color data is through comparisons,
called matchups, with in situ measurements (Bailey et al., 2001). However, ocean color
matchups against in situ ship-born measurements are relatively sparse. This is because of
the difficulties in acquisition of in situ observations and uncertainties involved in
comparing in situ measurements against satellite-derived data. Over the sensors’ lifetime,
there have been 250 chlorophyll-a concentration matchup points, strictly screened for



quality, for SeaWiFS and 34 for MODIS-Terra
(http://seabass.gsfc.nasa.gov/matchup_results.html). Therefore, matchups with in situ
observations are mostly used for intermittent validation of sensor data in concert with
spatial and temporal data consistency analyses. The other approach to validation is
matchup of ocean color data between sensors (Chapter 2; Kilpatrick et al., 2001). This
method assesses discrepancies between sensors over global to local zones and daily to
seasonal time scales. Such assessments are vital for the data merger because they enable
extraction of disparate trends and trend dependencies in data from different instruments.

There have been a number of methods developed to merge ocean color data. These
methods include averaging and weighted averaging of data within the sensor overlapping
coverage. Blending algorithms have been applied which fit a function over shape-of-the-
field defining data from one sensor given an internal boundary condition delimited by
data from the other sensor or in situ observations (Gregg and Conkright, 2001). A semi-
analytical optical algorithm has been developed which uses combined nLw retrievals
within overlapping coverage at different sensor-specific wavelengths to calculate
chlorophyll concentrations, combined detrital particulate and dissolved absorption
coefficients, and particulate backscattering coefficients (Maritorena et al., 2002;
Maritorena et al., 2000).

The major data merger effort undertaken by the SIMBIOS Project Office focused on
integrating ocean color data from global sensors at a daily temporal resolution. MODIS-
Terra and SeaWiFS data were used to study methodologies to create a consistent series of
long-term observations from sensors of different design, characterization, processing
algorithms, and calibrations. The information derived from MODIS-Terra and SeaWiFS
comparisons, described in Chapter 2, was used to derive an ocean color sensor cross-
calibration strategy to eliminate pronounced data temporal discrepancies between the
sensors and MODIS data artifacts. Statistical objective analysis was investigated to
spatially and temporally interpolate MODIS-Terra (cross-calibrated with SeaWiFS) and
SeaWiFS data onto daily global ocean color maps using individual sensor accuracies and
producing error bars for each data point on the map. Additional research was performed
to support local-area data merger applications, for instance in coastal zones. These
applications utilized ocean color data of different spatial resolutions and in situ
measurements. The multiresolution merger focused on enhancement of oceanic features
in lower resolution imagery using higher resolution data.

1. Machine Learning Cross-Calibration of Multi-Sensor and Multi-Year
Datasets To Create a Consistent and Calibrated Global Ocean Color
Baseline

1.1 Introduction

Described in Chapter 2 results from collection-4 MODIS-Terra and reprocessing-4
SeaWiFS data comparisons showed that over three years of concurrent operation, there
were significant discrepancies in ocean color measurements between the two sensors.



Differences in water-leaving radiances and chlorophyll-a concentrations between the two
instruments exceeded the maximum uncertainties preliminarily established for the
creation of consistent merged ocean color products. These discrepancies furthermore
varied temporally and spatially and were dependent on MODIS-Terra characterization
problems for features such as the side of the optical mirror, response versus scan angle,
and polarization sensitivity (Esaias et al., 1998).

To create a consistent series of ocean color measurements from multi-instrument, multi-
platform and multi-year observations, spatial, temporal and instrument artifact-driven
discrepancies between sensor data had to be eliminated. To accomplish it a sensor cross-
calibration approach was proposed. The goal of the ocean color sensor cross-calibration
was to bring multi-instrument and multi-year data to a single well-calibrated and
consistent baseline representation (Kwiatkowska, 2003). When data were cross-
calibrated, daily global sensor observations could be combined to provide a joint ocean
color coverage which was consistent through time and space and supported a number of
applications, including the creation of ocean Climate Data Records.

Cross-calibration of ocean color sensors has been a typical approach to adjusting
retrievals from instruments which do not have sufficient on-board calibration capabilities,
such as Ocean Scanning Multispectral Imager (OSMI) (Franz and Kim, 2001). Sensors
with operational calibrations have been also validated and cross-calibrated. Modular
Optoelectronic Scanner (MOS) was vicariously calibrated using three overlapping scenes
with SeaWiFS (Wang and Franz, 2000). SeaWiFS-obtained aerosol models and
normalized water-leaving reflectances and MOS-derived aerosol concentration and
molecular scattering estimates were used to calculate MOS top-of-the-atmosphere (TOA)
radiances. For spatial fields of relatively uniform SeaWiFS TOA radiances and
normalized water-leaving reflectances, MOS band calibration gains were obtained as a
ratio of SeaWiFS to MOS TOA radiances. Ocean Color and Temperature Scanner
(OCTS) and Polarization and Directionality of the Earth's Reflectances I (POLDER)
sensors were vicariously recalibrated with common in situ nLw data and a consistent
atmospheric correction to produce relatively comparable ocean color products with no
obvious bias differences (Wang et al., 2002). With more complex ocean color sensors
currently on orbit, such as MODIS, the cross-calibration task is more difficult and a
higher temporal and spatial accuracy of ocean retrievals is expected.

In this implementation, SeaWiFS was consequently chosen as the ocean color baseline
data set because it had a long history of calibration and validation efforts (Barnes et al.,
2001; Eplee et al., 2001), its data proved stable and self-consistent through the years, and
it was invariably used as a standard against which other sensors were cross-calibrated.
The cross-calibration aimed to bring MODIS-Terra product data to SeaWiFS-like values
or, in other words, to emulate SeaWiFS response given MODIS data. This was
accomplished by deriving a comprehensive machine learning approach. Machine learning
methodology was attractive because the amount of required a priori knowledge about
detailed sensor characterization, response changes, and the uncertainties of the radiative
transfer modeling, calibration, and algorithms, was minimal. The machines learned from
examples using abundant data from global overlapping coverage between MODIS and



SeaWiFS. They worked as regularity detectors to discover statistically salient properties
of investigated data.

Machine learning techniques have been used extensively in ocean color data processing.
Various sensor calibration and atmospheric correction parameters were derived by means
of regression (Barnes et al., 2001; Eplee et al., 2001; Gordon and Wang, 1994). The
empirical algorithm associating chlorophyll concentration with water-leaving radiances
was a result of the polynomial regression using in situ measurements (O’Reilly et al.,
1998). Multivariate optimization techniques were applied to ocean color data to
simultaneously retrieve in-water biophysical conditions and aerosol optical properties in
atmospheres containing weakly and strongly absorbing aerosols (Gordon et al., 1997;
Chomko and Gordon, 1998).

The cross-calibration strategy employed here was based on two foundations. Firstly, it
defined a variety of MODIS data products and parameters necessary to alleviate the
effects of MODIS temporal and spatial trends and artifact-driven dependencies in data.
Secondly, large amounts of joint MODIS and SeaWiFS data were applied to serve as
examples of these dependencies in order to determine the most appropriate regression
functions from MODIS to SeaWiFS data. Three types of machine learning techniques
were used in the current implementation: evolutionary computation, clustering, and
regression.

1.2 Machine Learning Techniques for Cross-Calibration

Machine learning techniques were employed to define MODIS inputs to the cross-
calibration which were essential in resolving the temporal and spatial trend and artifact-
driven dependencies in MODIS data. The space of possible MODIS data products and
parameters was searched for the most effective set of features enabling data dependence
decorrelation and cross-calibration with SeaWiFS. These features needed to provide
information on MODIS sensor and measurements that most unambiguously defined
MODIS data and made possible one-to-one mapping to SeaWiFS. A set of possible
features encompassed a variety of information describing MODIS data including water-
leaving radiances at all visible ocean bands, chlorophyll-a concentration, K_490,
atmospheric parameters such as AOT and ε, MODIS viewing and solar geometry,
geographical situation, day in the time sequence, and ancillary meteorological setting of
each MODIS data point. Conventional statistical and non-parametric rank-statistical
correlation algorithms (Press et al., 1992) were found insufficient to extract dependencies
in MODIS data because of the nonlinearity and fuzziness of the cross-calibration
problem. Consequently, an evolutionary-computation search mechanism was applied
through a genetic algorithm (Goldberg, 1989). The genetic algorithm evaluated and
propagated the fitness of various combinations of MODIS feature inputs through
generations of non-parametric regression neural networks which mapped these inputs to
SeaWiFS chlorophyll. The neural networks were trained on a multi-day MODIS and
SeaWiFS data set which was scaled down for fast processing.



Clustering was employed in the cross-calibration process to partition the feature space of
multi-day, multi-year, global overlapping MODIS-Terra and SeaWiFS data into clusters
of similar feature values. Separate cross-calibration processes were then performed on
each cluster data. This limited the complexity and improved the accuracy of the overall
sensor cross-calibration. In this implementation, a Linde-Buzo-Gray clustering algorithm
was applied (Linde et al., 1980).

Regression was the actual tool that determined the relationship between MODIS and
SeaWiFS data needed by the cross-calibration. The pre-merger validations presented in
Chapter 2 showed that the cross-calibration problem was highly nonlinear and highly
multidimensional with many dependencies present among data variables. Therefore, the
cross-calibration depended closely on a suitable choice of MODIS input features,
adequate clustering which spanned the entire space of MODIS and SeaWiFS feature data,
and on the regression algorithm, which needed to be effective with highly nonlinear and
ambiguous problems. Although the mapping between MODIS and SeaWiFS data could
be performed using conventional linear or non-linear regression, the use of artificial
neural networks or support vector machines was preferred (Pao, 1989). Neural networks
and support vector machines could deal with flawed, biased, and cross-dependent sensor
data because they are distribution free and can support highly nonlinear decision
boundaries in the feature spaces.

Artificial neural networks have been widely employed in remote sensing, mainly
however to solve classification problems, such as land cover or cloud type categorization
(Atkinson and Tatnall, 1997; Ainsworth and Jones, 1999; Gross et al., 2000; Tanaka et
al., 2000). In the current implementation, neural networks were initially employed to
perform the regression between MODIS and SeaWiFS data (Kwiatkowska and Fargion,
2002a). However, with the training sets becoming massive and encompassing a large
number of MODIS input features and multi-day, multi-year, global joint sensor
coverages, the neural networks turned out too slow in training. Support vector machines
replaced the neural network regression. Support vector machines are learning kernel-
based systems that use a hypothesis space of linear functions in high dimensional feature
spaces (Cristianini and Shawe-Taylor, 2000). Unlike neural networks, which try to define
complex functions in the input feature space, the kernel methods perform a non-linear
mapping of the complex data to high dimensional feature spaces and then use linear
functions to create decision hyperplanes or regression functions (Schölkopf, 2000). The
problem of choosing an architecture for a neural network is replaced by the problem of
choosing a suitable kernel. Kernel functions project the data into high dimensional
feature spaces to increase the computational power of the linear learning machines. The
advantages of support vector machines over neural networks are that they train
significantly faster, are better suited for work with high dimensional data, they often have
a single minimum to search, and they allow for scaling the importance of outliers.
Support vector machines have been applied in remote sensing to solve classification
problems (Azimi-Sadjadi and Zekavat, 2000; Gualtieri et al., 1999; Fukuda and
Hirosawa, 2001). Applications of support vector machines in remote sensing to solve
regression problems are sparse (Brown et al., 2000) and there are no reported
implementations involving ocean color data.



1.3 Machine Learning Implementation

The ocean color merger approach defined here was aimed at minimizing spatial and
temporal discrepancies between MODIS and SeaWiFS data, and scan angle and
latitudinal dependencies in MODIS data to produce consistent daily global coverages
from both sensors. The goal of the sensor cross-calibration was to reproduce uniform
SeaWiFS baseline response from MODIS data. To obtain the cross-calibration, support
vector machines were used to approximate the regression functions from examples of
MODIS and SeaWiFS concurrent coverages. Support vector machines learned complex
relationships between MODIS and SeaWiFS ocean data and were required to extend this
knowledge to unknown cases.

In this implementation, the regression was obtained between MODIS data and SeaWiFS
chlorophyll to merge both sensor data into a time series of daily global chlorophyll
baseline data sets. However, the regression could also be performed to generate baseline
data sets for water-leaving radiances and other products. The regression functions were
extracted using data from daily overlapping global bin coverages between MODIS-Terra
and SeaWiFS over a significant time series. L3 binned data were used at 36km resolution.
The 36km bin size was sufficient to extract generalized temporal and spatial trends and
instrument and calibration artifacts from MODIS data. The total data set encompassed 44
days of joint MODIS and SeaWiFS coverage spanned through time from October 2000 to
July 2002. This set was comprised of 1,672,188 examples and was subsetted in various
ways into training and testing sets for the support vector machine learning. The results
presented in this chapter were obtained by training on 42 days of overlapping MODIS
and SeaWiFS coverage, where, for each day, data from alternating bins were placed into
the training and testing sets. The remaining two days where used as an additional testing
set to evaluate the machine’s performance at extrapolating its knowledge through time to
unknown days of data.

Before applying the regression, input data had to be prepared to facilitate the support
vector machine training. Elimination of linear trends in data, seasonal components, and
slow variation could be important data preprocessing tasks because the algorithm might
ignore decisive subtle information present in the data in favor of large variations
exhibited by a trend (Masters, 1994). The seasonal trends, North-to-South variations, and
MODIS scan-angle dependencies shown by MODIS and SeaWiFS comparisons in
Chapter 2 were however ambiguous and intertwined. For the current implementation,
none of these deterministic components were removed from data. Instead, the regression
was made to exploit indirect information about these conditions included in input feature
data. The other data preprocessing consideration was scaling. Global chlorophyll
concentration inherently forms lognormal probability density functions (Campbell, 1995).
MODIS and SeaWiFS chlorophyll feature data were therefore passed through the
logarithm function to provide the most effective spread of their distributions. All input
feature data, including the chlorophyll logarithms, were then scaled and translated so that
they were within the limits from 0 to 1 in value. The scaling simplified the regression



because data values were then distributed within a small known range and encouraged
equitable spread of importance among input feature elements.

The genetic algorithm found 16 MODIS input features to be the most effective in
decorrelating MODIS data dependencies and these features were consequently used to
perform the cross-calibration from MODIS to SeaWiFS data:
• nLw_412, nLw_443, nLw_488, nLw_531, nLw_551, nLw_678,
• chlor_a_2,
• Tau_865,
• Eps_78,
• satellite zenith angle,
• solar zenith angle,
• longitude and latitude,
• ozone amount,
• humidity,
• and date.

After initial regression training exercises, it was determined that a single support vector
machine would be slow in learning decision functions on large data sets. Extensive data
sets were however needed to present the regression algorithm with a large variety of
possible feature distributions and relationships between MODIS and SeaWiFS data,
especially considering the noisiness and fuzziness of these relationships and complex
dependencies in data. To increase the efficiency and the accuracy of the regression, input
training data were clustered and then separate support vector machines were trained on
their corresponding data clusters. From plots and statistics it was established that the
clusters adequately spread data distributions for all input features. The distributions were
dependent on feature data probability densities within the training set. Parallel training on
smaller data sets decreased support vector machine learning times by a few orders of
magnitude, depending on the numbers of clusters and sizes of the training sets. Applying
multiple support vector machines trained on their individual clusters of data increased the
accuracy of the regression, which was critical to make the cross-calibration useful. One
thousand twenty four (1024) clusters were used to obtain the results presented in this
chapter, although different numbers of clusters were also investigated.

The regression emulated the response from the SeaWiFS baseline given data from
MODIS. To obtain the regression-based cross-calibration, support vector machines were
trained on clusters of MODIS feature data to reproduce corresponding SeaWiFS chlor_a
values. There was one support vector machine for each cluster. The machines discovered
the relationships between MODIS data and SeaWiFS chlorophyll and stored them in their
support vectors and coefficients. The training was automatic and once accomplished, the
stored vectors and system parameters could produce regression output for new data with
no significant processing. The convergence of support vector machines depended on the
choice of a kernel function. This study found the radial basis function to perform better
than linear, polynomial, and ANOVA kernels in support of regression between MODIS
and SeaWiFS data (Schölkopf et al., 1996). The results presented later in this chapter
were obtained using radial basis kernels:



radial basis function = 
2x ye γγγγ− − ,

where the γ parameter was equal to 1.0. A capacity parameter used in support vector
machines measured the richness or flexibility of the regression functions and provided the
protection against overfitting. An initial search for the capacity parameter, which
improved the generalization accuracy of the learning system, resulted in selecting the
capacity value of 8.4 for the subsequent investigations. Another parameter used in the
training of support vector machines was ε. ε controlled the insensitivity of the regression
by setting the predictions which lied within ε distance of their true values to be
sufficiently accurate (Hearst, 1998). ε was chosen to be equal to 0.001.

1.4 Machine Learning Cross-Calibration Results

The MODIS and SeaWiFS cross-calibration approach evolved over dozens of regression
training trials initially using neural networks and then support vector machines, applying
different parameters and data sets for training and testing. Some of these trials were
described in Kwiatkowska (2003). The results presented here were obtained by a recent
version of the cross-calibration strategy.

A large set comprising 42 days of global overlapping MODIS and SeaWiFS data was
used to create a representative training set for the support vector machine sensor cross-
calibration. The dates spanned in time from October 2000 to July 2002 in about half-a-
month intervals. For each day, data from every second overlapping bin between the
sensors were placed into the training set and the remaining data were included in the
testing set. There were 788,792 examples in the training set and 788,772 examples in the
testing set. The additional testing set comprised complete 2 days of global overlapping
data, which were separate from the 42 days used in training, and contained 94,624
examples. The training data was clustered into 1024 clusters and individual support
vector machines were trained on each cluster.

To evaluate the regression, scatter plots, called matchups, were created for SeaWiFS
chlorophyll versus the result of support vector machine regression from MODIS data.
These plots were presented alongside the scatter plots of SeaWiFS versus original
MODIS chlorophyll. Corresponding statistics were calculated for both data matchups and
displayed with the plots. The statistics were used to quantify the improvements
introduced by the machine learning cross-calibration to the time series of MODIS
chlorophyll distribution in comparison with the SeaWiFS baseline. The statistics included
slope (SLOPE) and intercept (INT) of the linear fit between SeaWiFS and MODIS data.
To calculate the linear fit, an outlier-resistant linear regression was applied based on the
robust Tukey’s biweight calculated perpendicularly to the bisector of MODIS vs.
SeaWiFS and SeaWiFS vs. MODIS data (Press et al., 1992). The robust bisquare
weighting ensured that the slope and intercept parameters were representative of the bulk
of the data distribution and were not skewed by a few outlier points. Furthermore,
matchup data robust correlation (CORR), root mean squared error (RMS), mean absolute
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linear space of chlorophyll data. The linear space allowed an effective scrutiny of the
MODIS and SeaWiFS cross-calibration statistics within most prominent ocean provinces,
including low chlorophyll waters and the gyres, and high chlorophyll coastal zones.
Because the chlorophyll probability density had a lognormal distribution (Campbell,
1995), matchups and corresponding statistics were also displayed in the logarithmic
chlorophyll space, except for the MPD which was calculated in the linear space.

Support vector machines were accurately trained on the 42-day training set. Fig. 1 shows
a scatter plot of original SeaWiFS and MODIS chlorophyll values from overlapping daily
coverage contained in the training set, a), and a scatter plot of original training SeaWiFS
chlorophyll against the chlorophyll obtained by regression from MODIS data, b). In an
ideal case, data within plot b) should lie on the y=x line and the training data are very
close to this distribution. The support vector machines therefore learned the training set
almost perfectly.

Linear scale

Logarithmic scale



Fig. 1. Scatter plots for the 42-day training data set a) SeaWiFS against MODIS training
set chlorophyll and b) SeaWiFS training set chlorophyll against chlorophyll regressed
from MODIS data. The support vector machines were trained highly accurately to
reproduce SeaWiFS chlorophyll data.

The support vector machines were then evaluated against the 42-day testing set data. The
result of the evaluation is displayed in Fig. 2. Fig. 2b shows that the cross-calibration
introduced substantial improvements to the general trends in MODIS chlorophyll
distribution when compared to the original MODIS and SeaWiFS discrepancies from Fig.
2a. The improvements are present in all statistical parameters obtained from the
matchups, including enhanced slope and intercept of the linear fit in data, increased
correlation, and decreased mean absolute differences. The mean percent difference
between MODIS and SeaWiFS chlorophyll was decreased by over 10% across the two-
year daily global time series. For the purpose of a consistent series of multi-instrument
and multi-year ocean color observations, this decrease in overall sensor discrepancies was
significant. Although the cross-calibration demonstrated the ability to correct the
distribution of the majority of MODIS chlorophyll, the support vector machines also
misclassified some examples which appear in plot b) as noise away from the y=x line.
The low density of the misclassified points indicated that they were infrequent. The
misclassifications were caused by the overall noisiness of the data set, the complexity and
inconsistency of sensor data relationships, and the difficulty to establish a fine boundary
between regression function overfitting and overgeneralization.
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Fig. 2. Scatter plots for the 42-day testing data set: a) SeaWiFS against MODIS testing
set chlorophyll, and b) SeaWiFS testing set chlorophyll against chlorophyll regressed
from MODIS data. The support vector machine regression substantially improved the
distribution of the bulk of MODIS chlorophyll data compared to SeaWiFS chlorophyll.

The significance of the improvements obtained through MODIS and SeaWiFS cross-
calibration was demonstrated by the reduction of artifacts present in MODIS data. To
evaluate the changes in MODIS data distribution in more detail, the regression’s impact
on MODIS data temporal trends and scan-angle and latitudinal dependencies was
investigated.  The testing results of support vector machine cross-calibration were
separated into the individual days and analyzed independently. For each day, matchups
were created between original MODIS and SeaWiFS testing chlorophyll and between
SeaWiFS chlorophyll and the result of the support vector machine regression. The MPD
and the slope of the linear fit gave a good estimation of the discrepancies between the
corresponding data sets (Chapter 2) and were used to evaluate the performance of the
mapping.



Fig. 3 illustrates MPDs, calculated against the SeaWiFS benchmark, plotted for each day
and connected by lines through 42 days of the time series. The MPDs were obtained
between SeaWiFS and MODIS chlorophyll and between SeaWiFS chlorophyll and the
result of the regression mapping from MODIS data. Throughout the time series, the
MPDs are consistently and substantially smaller for the support vector machine
chlorophyll than for MODIS chlorophyll. Fig. 3 also shows that the MPDs between
SeaWiFS and original MODIS chlorophyll vary seasonally. These seasonal sensor
chlorophyll disparities disappear in the MPD plot for SeaWiFS and the regression result.
The support vector machine cross-calibration therefore eliminated the seasonal trends in
MODIS and SeaWiFS data discrepancies and decreased the differences in chlorophyll
data between the sensors.

Fig. 3. Time trends in daily mean percent differences between SeaWiFS and original
MODIS chlorophyll and between SeaWiFS chlorophyll and the result of the support
vector machine regression from MODIS data.

From MODIS and SeaWiFS comparisons of daily global data sets described in Chapter 2
it was established that individual matchups with SeaWiFS for MODIS western and
eastern scan-part data revealed distinct patterns in MODIS data behavior at different scan
angles. To investigate the change in MODIS scan angle dependencies obtained by
MODIS and SeaWiFS cross-calibration, MODIS daily global data were divided into
subsets corresponding to their scan angle coverages and the subsets were individually
matched against SeaWiFS chlorophyll. The two subsets of main concern corresponded to
data located on the western and eastern scan edges of the MODIS swath. The scan edge
widths constituted almost 400 of MODIS zenith angle coverage for each part of the scan.
For each day within the 42-day time series, MODIS chlorophyll data from the testing set,
located within these two scan-edge coverages, were separately matched against SeaWiFS
test set chlorophyll. Similarly, the output of the support vector machine tests
corresponding to MODIS western and eastern scan edges was compared against
SeaWiFS test set chlorophyll. It was demonstrated in Chapter 2 that slope and intercept
of the linear fit between the matched data gave a good estimate of scan angle
dependencies in MODIS products. Fig. 4 contains plots of slope values obtained in the
two comparisons between testing matchup data coinciding with MODIS western and



eastern scan-edge coverages. To produce the figure, the slope values were connected
across the 42-day time series into slope lines. Scan angle dependencies in original
MODIS chlorophyll appear in Fig. 4a as systematically different slope values for western
and eastern MODIS-scan test data in matchups with SeaWiFS. The slope lines obtained
from matchups against support vector machine testing results in Fig. 4b run almost
conjointly. This provided evidence that MODIS scan angle dependency was adequately
eliminated from the regression result by the sensor data cross-calibration.

Fig. 4. Time trends in the slope of the linear fit between a) SeaWiFS and original MODIS
chlorophyll for separate western and eastern MODIS scan-angle coverages and b)
between SeaWiFS chlorophyll and the result of the support vector machine regression
from MODIS data for the same MODIS scan coverages.

Comparisons of daily global MODIS and SeaWiFS data described in Chapter 2
demonstrated that sensor data discrepancies exhibited latitudinal dependencies. To
investigate change in the latitudinal pattern produced by MODIS and SeaWiFS cross-
calibration, daily global testing set data were divided between the northern and southern
hemispheres and the two coverages were investigated independently. Fig. 5 illustrates
slope in the linear fit between SeaWiFS and original MODIS chlorophyll and between
SeaWiFS and the result of support vector machine regression obtained separately for the
northern and southern hemispheres over the 42-day time series of testing set data. Fig. 5
demonstrates that, while the northern-to-southern hemisphere discrepancies were very
prominent in original chlorophyll data in plot a), the discrepancies largely disappeared



from the cross-calibrated data in plot b). Support vector machine regression therefore
eliminated latitudinal dependencies in MODIS data in comparison with SeaWiFS
chlorophyll.

Fig. 5. Time trends in the slope of the linear fit between a) SeaWiFS and original MODIS
chlorophyll for separate northern and southern hemisphere coverages and b) between
SeaWiFS chlorophyll and the result of the support vector machine regression from
MODIS data for the corresponding hemispheres.

MODIS and SeaWiFS ocean color comparisons from Chapter 2 demonstrated that
discrepancies between the two sensor data manifested significant temporal and spatial
variabilities and involved many dependencies among data variables. It was therefore
challenging to extrapolate the knowledge of MODIS and SeaWiFS data relationships
gained over a sparse time series onto the entire two-year period of the concurrent sensor
coverage. There were two additional days in the data set which were not applied in the
support vector machine training. Their purpose was to serve as a supplementary testing
set to verify the support vector machine capabilities to extrapolate their knowledge
through time to unknown dates. The days were inside the October 2000 to July 2002
period used in the training. Fig. 6 shows the scatter plots between SeaWiFS and original
MODIS chlorophyll for these two dates, a), and between SeaWiFS chlorophyll and the
cross-calibration result, b), where the cross-calibration support vectors were obtained
from the 42-day training set. Fig. 6b illustrates that the cross-calibration knowledge
gathered within the 42 days of combined MODIS and SeaWiFS coverage transferred



relatively well to the new data dates. The bulk of the support vector machine testing
result closely approximated SeaWiFS chlorophyll. This was evident from improved
scatter plot distributions. The MPD in plot b) was not as low as the value obtained on the
42-day testing set, which showed an average of 16.7% in Fig. 2, but it decreased from the
original MODIS and SeaWiFS MPD in plot a). All other statistics were comparable or
better than those achieved on the 42-day testing set, including a substantial improvement
in the slope of the linear fit between SeaWiFS and the cross-calibrated chlorophyll.

Linear scale

Logarithmic scale

Fig. 6. Scatter plots for the 2-day testing data set separate from the 42-day time series
used in the support vector machine training: a) SeaWiFS versus MODIS testing set
chlorophyll, and b) SeaWiFS testing set chlorophyll versus chlorophyll regressed from
MODIS data. The regression was able to extrapolate its cross-calibration knowledge
through time to new data days and substantially improve the distribution of the bulk of
MODIS chlorophyll data compared to SeaWiFS chlorophyll.

The cross-calibration was also investigated for its ability to extrapolate its knowledge of
scan angle and latitudinal dependencies in MODIS data onto unknown data dates. The 2-
day testing set was subsampled into western and eastern MODIS scan edge coverages



and northern and southern hemispheres. The results of the corresponding matchups are
displayed in Fig. 7. The figure demonstrates that the support vector machines were still
effective at eliminating scan angle dependencies and northern-to-southern hemisphere
discrepancies in MODIS data. Consequently, their cross-calibration experience gained
with a limited time series could be transferred to the complete time span of data.

Scan angle dependencies Latitudinal dependencies

Fig. 7. Time trends in the slope of the linear fit for data corresponding to separate western
and eastern parts of the MODIS scan and northern and southern hemisphere coverages
between a) SeaWiFS and original MODIS chlorophyll and b) between SeaWiFS
chlorophyll and the result of the support vector machine regression from MODIS data.

The goal of sensor cross-calibration to reproduce uniform SeaWiFS baseline response
from MODIS data was consequently accomplished. Spatial and temporal discrepancies
between MODIS and SeaWiFS data and scan angle and latitudinal dependencies in
MODIS data were significantly reduced. Support vector machines were also able to
extend their knowledge of complex relationships between MODIS and SeaWiFS ocean
data to new unknown cases. A consistent series of daily global chlorophyll measurements
could then be produced from MODIS and SeaWiFS by using MODIS data cross-
calibrated with SeaWiFS. Fig. 8 contains merged MODIS and SeaWiFS global
chlorophyll for 14 May 2001, where MODIS unique coverage for this day was regressed
to the SeaWiFS baseline.



Fig. 8. Merged MODIS and SeaWiFS daily global chlorophyll baseline.

1.4 Conclusions

The objective of creating global ocean color data sets from multiple satellite sensors is
important in the era of many concurrent ocean-observing missions. This goal is, however,
hampered by incompatibilities in product data between the missions. MODIS-Terra and
SeaWiFS ocean color data sets revealed significant discrepancies, described in Chapter 2,
which were dependent on sensor calibrations and operational characteristics. These
discrepancies inhibited the creation of consistent daily global merged data sets from both
sensors. To bring MODIS ocean data to the SeaWiFS baseline, the application of
machine learning cross-calibration was investigated. Support vector machines were
trained to emulate SeaWiFS baseline chlorophyll from MODIS data. The ultimate
objective was to produce joint MODIS and SeaWiFS daily global coverages which had
the accuracy and the spatial and temporal consistency of SeaWiFS data sets.

Machine learning regression turned out to be a promising tool for the data merger.
Support vector machines were able to accurately learn complex relationships between
MODIS and SeaWiFS data and to effectively reduce sensor data discrepancies and
eliminate MODIS artifacts, such as seasonal trends, scan angle dependencies, and spatial
variation. Overall, the machines performed well within the time series on which they
were trained and also proved the capability to extrapolate their knowledge to the entire
time span of concurrent operations of the instruments. The performance of the machines
can be improved by forming training sets that are more representative of the total MODIS
and SeaWiFS time series and by reducing the noise in the data. Also, the support vector



machine regression can be further investigated for parameters and implementation
additions to make it more robust and accurate.

Although the machine learning approach presented in this paper regards cross-calibration
of MODIS and SeaWiFS global chlorophyll-a products, the mapping into other sensor
product data can also be performed. For example, MODIS data can be used to predict
SeaWiFS nLw measurements at various wavelengths. Chlorophyll concentration can then
be calculated from these radiances using the standard SeaWiFS OC4v4 algorithm
(O’Reilly et al., 1998). Top of the atmosphere reflectances can be mapped between the
instruments given different sensor and solar geometries and atmospheric paths. Also,
various other sensor parameters, such as adjustments to sensor calibration gains, can be
mapped using the machine learning methodology.

2. Statistical Objective Analysis: Spatial and Temporal Interpolation of
Multi-Sensor Ocean Color Data onto Daily Global Binned Coverage

2.1 Introduction

Spatial and temporal interpolation can be applied to merge multi-sensor daily ocean color
data onto global coverage grids (Kwiatkowska and Fargion, 2002b). The interpolation
can be used in two ways. Firstly, single sensor data can be adeptly interpolated onto a
global grid and to fill sensor’s gaps in ocean coverage. Multi-sensor data can then be
integrated by joint binning, a technique that is comparable to the “big-bin” approach or
by optical algorithms using combined nLw retrievals at sensor-specific wavelengths
(Maritorena et al., 2002; Maritorena et al., 2000). This would avoid the circumstances
which limit the spatial consistency of the merged coverage, when some bins contain data
from only one of the sensors and some bins contain a mix of data from multiple sensors.
Secondly, multi-sensor data can be concurrently integrated onto a global grid using
corresponding sensor data accuracies. Both methods of interpolation should preferably
work with temporally and spatially stable ocean color measurements because applying
time and space dependent instrument error estimates may be ambiguous and impractical.

For the purpose of this ocean color merger application, spatial and temporal interpolation
was envisioned as a binning approach for multi-sensor data. The binning could fill many
gaps present in daily global ocean color coverage depending on space and time distances
between gaps and existing data. The binning was designed to operate on ocean color
output products, such as chlorophyll-a concentration. Interpolation considered a spatial
and temporal correlation structure of the chlorophyll field, which was dependent on the
local area natural variabilities. Prior sensor cross-calibration was performed, such as in
Section 1, to bring the multi-sensor data to a consistent baseline and eliminate sensor
temporal trends and data artifacts. Sensor data accuracy used as a weighting factor in the
interpolation was calculated from matchups with in situ measurements.



A well-known method to perform interpolation of environmental data is statistical
objective analysis (Thiebaux and Pedder, 1987). Objective analyses use numerical
methods to estimate geophysical field variables on surfaces and on three- and four-
dimensional grids from data that are available at discrete locations and times. The method
was first applied in meteorology to ground and satellite measurements. It calculates an
interpolated grid-point value as a weighted linear combination of observations (Thiebaux,
1973). In an empirical linear interpolation, weights are either a function of separation
between analysis and observing locations or a function of accuracy of one observation
relative to another. A distance weighting with weight normalization is the most common.
In statistical objective analysis, the approximation is obtained by making additional use
of the ensemble spatial correlation structure of the whole field, i.e. the spatial distribution
of observations relative to one another (Julian and Thiebaux, 1975). The analysis
considers instrument errors and other variations in data so that an interpolated value of a
field variable does not have to be identical with an observed value at corresponding
space/time coordinates, but it is intended to coincide with the signal component of the
observed variable.

The practical requirement for the use of this algorithm is that there has to exist a
preliminary “prediction” of the signal, or a first-guess field, and the objective analysis
corrects this prediction by interpolating the signal with a single or multiple passes of the
algorithm. At successive corrections, non-zero weights are given to observed increments
only if the observations lie within a prescribed distance, known as the influence radius, of
the grid point being considered. This influence radius may be decreased with successive
passes of the algorithm. The analyzed grid point value is written as
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, where σij is a covariance

between an ith and jth observation.

Statistical objective analysis has been applied to create NOAA's real-time global sea
surface temperature (SST) maps (Reynolds, 1988; Reynolds and Smith, 1994). The maps
are produced weekly on a one-degree grid. The analysis uses buoy, ship, and satellite
SST data, and SST's simulated by sea-ice coverage. The approach applies individual
sensor errors and a globally averaged space-lag correlation structure of the SST field.



2.2 Statistical Objective Analysis Implementation

For this study, the covariances between chlorophyll data points were expressed in terms
of space and time-lag correlation functions, ρ(s), which were calculated from ocean color
data. This assumed that the variance of the chlorophyll concentration truth-value was a
constant σ2 at all locations, the noise variance of chlorophyll was a constant η2 and
independent of location, the space-lag covariance of the chlorophyll-truth was isotropic,
and the covariances of the noise at different locations were zero (Thiebaux and Pedder,
1987). The weighting scheme for the chlorophyll-interpolated truth-value was then
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, where sij is a distance

between the ith and jth points and γ -1 is the signal-to-noise ratio, σ2 / η2, of the
chlorophyll concentration product.

The assumptions for this equation were not met for chlorophyll data and modifications
were introduced into the algorithm. Chlorophyll truth and noise variances vary depending
on the amount of chlorophyll concentration which fluctuates through five scales of
magnitude from 0.001mg/m3 to 100mg/m3. Because chlorophyll has a lognormal
distribution, analyzing chlorophyll in a logarithmic space shrinks the range of data values
to a single scale of magnitude (Campbell, 1995). To use this property, chlorophyll and
chlorophyll-error variances were derived from in situ matchups in the logarithmic
chlorophyll space and the logarithmic signal-to-noise ratio was assumed constant at all
locations. For each interpolation grid point, chlorophyll values were then converted to the
logarithmic space to tie in with the logarithmic statistics.

Modeling space-lag correlation functions is a subject of extensive research (Julian and
Thiebaux, 1975). The correlation is expressed as a function of the spatial separation of
locations of points in geographic coordinates. For this study, a 3-dimensional statistical
objective analysis was investigated using time as the third dimension and with data points
separated by a day or a number of days to interpolate a given grid location. For the 3-
dimensional analysis, space-lag correlations were derived for data at different distances
and 0 to 7 days apart. The space and time-lag correlation functions were initially
calculated globally over daily chlorophyll concentration fields. Afterward, non-isotropic
space and time-lag covariance of the chlorophyll-truth was investigated. Space and time-
lag correlation of the chlorophyll field was assumed to be dependent on local area spatial
and temporal variabilities. Chlorophyll variabilities were modeled using a standard
deviation function. The variabilites were derived using 9-day and biweekly MODIS-
Terra and SeaWiFS global L3 chlorophyll maps at an initial spatial resolution of 36km,
chosen to limit processing time. Standard deviations were dependent on the radius of the
local area under investigation and on the average chlorophyll magnitude within the area.
Standard deviations were approximated for different chlorophyll magnitudes and 13
classes of ocean variabilities were defined based on the standard deviation functions.
Each ocean data point, a bin, on the global map was then assigned to a vector of



chlorophyll variability classes. The vector was composed of chlorophyll variability
classes at consecutive distance ranges from 0 to 1000km at 10km intervals from the point
under consideration. Space and time-lag correlations could then be calculated in a manner
dependent on the classes of chlorophyll variability in the ocean. Correlations were
obtained for chlorophyll value increments from the first-guess background field at
different distance ranges. Separate increment correlations were calculated spatially within
a single given day and between the given-day chlorophyll and chlorophyll a number of
days away. The background field was assumed to be a global chlorophyll 9-day mean. To
compute the correlations, data were applied from days which followed the week used as
the first-guess estimate. The correlations across consecutive distance ranges were
calculated separately for each chlorophyll variability class. The components for the
increment correlation functions came from the global chlorophyll maps and, for each
point, used its variability classes at corresponding distance intervals. Fig. 9 shows
preliminary results of space-lag correlations for increments from the 9-day global
chlorophyll first-guess field at the same day and 2-day time intervals. The results of the
calculations were approximated by exponential functions. The 13 correlations are shown
in different colors corresponding to their classes of chlorophyll spatial variabilities, from
low variance in dark blue to high variance in red. The figure also displays global ocean
variability maps for the 13 spatial variability classes with the same color-coding. The first
map shows classes of variability within a 100km radius and the second – classes of
variability within a 600km radius.

Approximated correlation functions Global spatial variances
Within 100km distance range

Within 600km distance range

Fig. 9. Space-lag correlation functions for chlorophyll increments from the first-guess 9-
day mean field averaged over global data sets and within 10km distance intervals
between the points. The 13 functions shown in different colors correspond to different
spatial variability classes, from low variance in dark blue to high variance in red. Global
spatial variability distributions are shown on the right where the variances where
calculated within 100km and 600km distance ranges, correspondingly. The correlations
were approximated from MODIS-Terra L3b 36km global time series.



Fig. 9 illustrates that natural spatial variability of phytoplankton limits the extent of
spatial and temporal interpolation of ocean color data. The spatial-lag correlations for
chlorophyll increments were relatively low. The class number 1 at time difference of 0
days had correlation values around 0.4 for short distances which did not decrease to 0 for
longer distances. High variability classes formed increment correlation functions not
higher than 0.4 and approximating 0 at short distances. This apparent spatial diversity of
chlorophyll concentration increments, averaged over global scales, showed that
chlorophyll data differed from meteorological data, which were better correlated and for
which the statistical objective analysis was originally created (Thiebaux and Pedder,
1987). The correlation functions were dependent on the definition of the first-guess
background field. A relatively up-to-date and complete chlorophyll map had to be chosen
to initialize the analysis. Eventually, the first-guess field would be the previous day
global chlorophyll coverage obtained by the preceding step of the interpolation.
Therefore, the correlation functions could change somewhat when a more appropriate
first-guess field is applied. The influence radius for the analysis was defined to be equal
to 600km, following information about the shape of the space-lag correlation functions
for chlorophyll increments. With low correlation values and the short influence radii, the
statistical objective analysis cannot interpolate chlorophyll grid points which lie relatively
far from valid data.

2.2 Statistical Objective Analysis Results

Because the current investigations of the statistical objective analysis were preliminary,
only single-sensor-based interpolation was performed to fill sensor’s gaps in ocean
coverage (Kwiatkowska and Fargion, 2002b). A simple logarithmic signal-to-noise ratio
of chlorophyll data was calculated by dividing the mean value of chlorophyll by the
chlorophyll variance both derived from the matchups with in situ measurements. Two-
dimensional and 3-dimensional forms of the analysis were tested only for globally
averaged chlorophyll increment correlations without considering local area variability
ranges. A globally averaged space-lag correlation function for chlorophyll-a
concentration in single-day increments is illustrated in Fig. 10. The function was created
from chlorophyll-increment correlations from a weekly mean and was approximated
using an exponential function: 0.582708 0.984943 0.0189976xy = ⋅ + , where X was a
distance between points expressed in kilometers. The function was obtained using
SeaWiFS L3b daily global chlorophyll time series at 36km resolution. A value of 1 was
assumed when points within the same-day overlapped spatially and a value of 0 was
assumed when the points were outside the radius of influence, which was set at 600km.
Space-lag correlation functions were similarly approximated for points separated by up to
3 days from the interpolated day.



Fig. 10. Chlorophyll increment space-lag correlation function averaged over a single-day
global data set and within 10km distance intervals between the points. The first-guess
background field was the weekly global chlorophyll mean.

Fig. 11 shows the result of the spatial statistical objective analysis on SeaWiFS L3 binned
daily global chlorophyll coverage at 36km resolution for 8 April 2001. Only those
SeaWiFS grid points were interpolated which, for this day, coincided in coverage with
MODIS bins containing valid data. If a similar interpolation was done using this day’s
MODIS data, MODIS and SeaWiFS chlorophyll concentration products could be merged
by means of averaging or weighted averaging, where all valid bins would contain data
from both sensors. For the analysis to be applied with the semi-analytical optical
algorithm (Maritorena et al., 2002), the interpolation had to be done on MODIS and
SeaWiFS nLw products on the bands used for chlorophyll extraction. Ultimately, the
interpolation would be performed jointly on MODIS and SeaWiFS chlorophyll using
corresponding statistics for both sensors and, preferably, as a binning scheme beginning
with the L2 products. MODIS data would then be first cross-calibrated with SeaWiFS
because, otherwise, MODIS trends and artifacts would be inseparably intertwined with
SeaWiFS data in the merged data set.



Fig. 11. Original MODIS and SeaWiFS 36km binned chlorophyll concentration data sets
for 8 April 2001 and the result of the 2-dimensional statistical objective analysis on the
SeaWiFS chlorophyll bins coinciding with the MODIS coverage.

For the interpolation, problematic areas in ocean color daily imagery were those where
gaps in global coverage were large in spatial and temporal terms, such as below persistent
clouds, sun-glint, or SeaWiFS tilt change. It was observed that within these gaps the
result of the analysis looked realistic but some interpolated coverage had values very
close to the first-guess field. Eventually, each output point would be assigned a
confidence level which would be dependent on accuracies of the original data sets and on
the distances from the existing points used for the interpolation.

The statistical objective analysis was computationally involved. It considered ensemble
spatial distributions of observations relative to one another which were contained within a
radius of influence of an investigated grid point. This resulted in large covariance
matrices whose size depended on the number of valid data points within the radius of
influence from the interpolated point. At 9km, which is the ultimate resolution for the
data merger, the quantity of L3 bins will be an order of magnitude higher than at the
resolution of 36km. When ultimately operating on L2 data, the amounts of points
analyzed inside the radius of influence could be massive. The analysis involved inverting
square matrices of covariances for each investigated grid point. To ease the
computational effort, an effective strategy was designed in which radii smaller than the
influence radius were first searched to determine whether they contained sufficiently high
proportions of valid data bins to perform the interpolation. If there were enough valid
data inside the smaller radius, these data were then used to interpolate the grid point.



Because the covariance matrices were symmetric and positive definite, an efficient
Cholesky decomposition was used to solve the matrix equation (Press et al., 1992).

2.3 Conclusions

Statistical objective analysis was introduced as a spatial and temporal interpolation
approach to combine multi-sensor ocean color data sets onto daily global grids using
corresponding sensor accuracies and an ensemble correlation structure of the global
chlorophyll field. The interpolation was envisioned as a binning approach for multi-
sensor data beginning with the L2 products. The binning would effectively combine
sensor data using pixels surrounding the bin grid points in space and across time and
would consequently fill many gaps in daily global ocean color coverages. The ensemble
correlation structure of the chlorophyll field was established individually for all global
coverage grid points and made dependent on the local area natural variabilities. Preceding
the interpolation, sensor cross-calibrations would be performed to bring the multi-sensor
data to a consistent baseline and eliminate sensor temporal trends and data artifacts.
Sensor data accuracy was used as a weighting factor in the interpolation and came from
matchups with in situ measurements.

The initial results were obtained from the 2- and 3-dimensional statistical objective
analysis of daily global SeaWiFS L3 binned chlorophyll data. The analysis interpolated
selected missing SeaWiFS bin coverage for this day. The analysis demonstrated to be a
useful tool for ocean color data merger. However, more research would be needed to
make the statistical objective analysis more effective in terms of the choice of the first-
guess background fields and associated space-lag correlation functions and influence
radii. The statistical objective analysis was also computationally involved in operational
processing of multi-sensor data. Therefore, means for improvement of its efficiency
could be investigated. Finally, the capabilities of the analysis to provide error bars for all
interpolated data points could be further studied.

3. Local Area Application of Data Merger: Enhancement of Oceanic
Features in Lower Resolution Imagery Using Higher Resolution Data

3.1 Introduction

This study examined ocean color merger opportunities at local spatial scales to provide
useful tools for scientists interested in smaller-size geophysical phenomena and in
complex environments such as coastal zones. The feasibility of merging ocean color data
from sensors of different spatial resolutions was studied for cases where there was
overlapping ground coverage for individual scenes (Kwiatkowska-Ainsworth, 2001;
Kwiatkowska and Fargion, 2002a). The prospect of enhancing oceanic features in lower
resolution imagery through the use of higher resolution data was also investigated.

The algorithm operated on L2 ocean color data products and was based on a signal
processing approach — wavelet multiresolution analysis (Rioul and Vetterli, 1991). The



wavelet transform enabled an image to be examined at different frequency and scale
intervals (Mallat, 1989). This corresponded to image analyses at variable frequency and
spatial resolutions. The resolution of an image, corresponding to a measure of detail
information in the scene, was defined and changed by a combination of high pass and low
pass filtering operations. The scale of an image was altered by downsampling and
upsampling operations. The wavelet transforms used in this analysis therefore functioned
as power-of-2 operators for subsampling and resolution change. Fig. 12 illustrates the
process of decomposition of a one-dimensional signal by a discrete wavelet transform
(DWT). The figure also shows changes in scale and frequency contents of the filtered
output.

Fig. 12. Consecutive levels of wavelet transform decomposition of a one-dimensional
signal. At the first decomposition level, the signal is passed through the high pass and
low pass filters, followed by subsampling by 2. The output of the low pass filter is then
passed at level 2 through the same low pass and high pass filters for further
decomposition. The process is repeated at the subsequent levels. Changes in output
frequency and scale are indicated.

The wavelet merger algorithm thus operated on scenes from sensors of different spatial
resolutions (Núñez et al., 1999; Blanc et al., 1998). The high-frequency, low-scale spatial
detail in the higher resolution scene was extracted using the high pass filters of the
wavelet transform. The result of the low pass filtering of the higher resolution image was
completely replaced by the lower resolution scene. This modified wavelet transform of
the higher-resolution image was then reversed. For the lower resolution scene this
process resulted in the increased spatial resolution and added high frequency variation.



The enhanced spatial resolution was gained without altering the mean magnitudes of
lower-resolution ocean color values. This made the wavelet method particularly useful
when the quality of data was different between the sensors and the measurement accuracy
of the lower resolution sensor had to be preserved. To perform merger of data from both
scenes, the result of the low pass filtering of the higher resolution image, instead of being
completely substituted by the lower resolution scene, would be replaced with its weighted
average with the lower resolution scene. The reversal of the transform would then
produce a merged image where the merger was performed on the level corresponding to
the lower-resolution coverage from both sensors and the lower scale detail was added
from the higher resolution scene.

3.2 Wavelet Transform Implementation and Results

The wavelet algorithm was tested using chlorophyll-a concentration imagery from
SeaWiFS and MOS. The SIMBIOS Project cross-calibrated SeaWiFS and MOS
missions, processed their data uniformly, and analyzed them for overlapping concurrent
ground-coverage (Wang and Franz, 2000). SeaWiFS L2 HRPT and LAC scenes used in
the analysis had a native resolution of 1.1km and MOS imagery had the resolution of
0.5km. A significant obstacle was to co-register scenes from both sensors so that the
accuracy of the overlay was within 0.5km and to define resolutions and scene sizes to be
in power of 2 for the multi-resolution analysis. A basic strategy was designed where
SeaWiFS data were binned at 1km and MOS data were binned at 0.5km. Bins were then
projected onto a rectangular longitude/latitude grid map to facilitate image processing.
Because the dimensional sizes of the rectangular grids were limited to powers of 2, the
mapped scenes had to be padded with zeros to fill the grid. The size of the SeaWiFS grid
was half the size of the MOS grid. To preserve the spatial resolution of the bins, the
projection spread the bins longitudinally according to the longest row for each scene.
Bins from all other rows were then fitted into the grid given their longitude distance from
the longest-row longitudes. This technique was only applicable to local coverage scenes
used in this analysis, which were of the LAC and HRPT size, and it would not be
appropriate for global imagery. Any missing grid points caused by the mapping of
spherical coordinates onto a rectangular grid were approximated. The approximation used
a wavelet-based iterative algorithm that minimized high frequency anomalies associated
with the missing data points. The preprocessing therefore resulted in reformatted mapped
scenes from both sensors with the desired size and resolution for the wavelet analysis.

Because the resolution ratio between SeaWiFS and MOS scenes was equal to 2, only one
level of wavelet decomposition was required for the processing. This single pass of the
wavelet filtering was applied to the MOS image. The transform extracted pixel-to-pixel
spatial detail from MOS data in its high-frequency components and higher-scale
background in its low-frequency components. The transform also subsampled the MOS
scene by 2 so that its high and low frequency components corresponded to 1km spatial
resolution, the same as the SeaWiFS scene resolution. The SeaWiFS image was
concurrently preprocessed to bring the magnitude of its chlorophyll values to the level
corresponding to a single application of the low pass filter. Then in the two scenarios, the
MOS low-pass filter result was replaced either by the entire preprocessed SeaWiFS scene



or by its weighted ratio with the preprocessed SeaWiFS scene. The ratio depended on the
established relative accuracies of the chlorophyll products from each instrument. An
inverse wavelet transform was subsequently applied which produced an increased 0.5km
resolution SeaWiFS image or a 0.5km SeaWiFS image merged with MOS data. The
enhanced SeaWiFS scene inherited its low-scale spatial detail from the high-frequency
contents of the MOS scene. To generate the final product, flags and masks from SeaWiFS
and MOS chlorophyll data were also merged and applied to the subsequent image. Fig.
13 shows an example of the wavelet multiresolution merger of SeaWiFS and MOS
scenes of Mallorca and Menorca in the Mediterranean Sea.

Fig. 13. Original L2 MOS and SeaWiFS chlorophyll-a concentration scenes and the
process of wavelet-based merger of both data sets mapped to a rectilinear grid. The
SeaWiFS scene was preprocessed and the MOS scene underwent a single level of
wavelet decomposition. The 2-dimensional DWT separately passed high (H) and low (L)
pass filters through the scene at first across the rows with column subsampling, and then
across the columns with row subsampling. The MOS row and column low-pass
coefficients (LL) were replaced by their weighted ratio with the preprocessed SeaWiFS
scene. The wavelet transform was reversed, thus producing the merged output image at
0.5-km resolution.

To validate the wavelet algorithm, the original MOS scenes were compared against the
SeaWiFS scenes enhanced to 0.5km resolution using the wavelet method and using
bilinear interpolation. The bilinear interpolation on its own did not provide the benefits of
the higher-frequency feature extraction which enabled SeaWiFS imagery to acquire



spatial detail inherent in MOS data. Quantitatively, the correlation of bilinearly
interpolated SeaWiFS imagery with original MOS imagery was considerably smaller
(~10%) than the correlation for the wavelet-enhanced SeaWiFS scenes. Qualitatively, the
gain in spatial detail obtained by the wavelet approach was consequential and unique.
Merger of original MOS scenes with bilinearly interpolated 0.5km resolution SeaWiFS
data was also compared against the result of the wavelet multiresolution analysis. This
merger did not, however, allow the preservation of the magnitudes of SeaWiFS lower-
resolution ocean color values and complete high-frequency spatial variation from MOS
data. Overall, the wavelet algorithm performed superior to other approaches.

The application of the wavelet approach brought also some difficulties. MOS data were
inherently noisy. Although the wavelet-merged scenes appeared sharper, there was a
degree of high-frequency noise introduced from MOS scenes. As it happened, wavelets
also provided a means for denoising speckled imagery (Donoho, 1995). Therefore,
denoising was implemented as an option in the algorithm. The implementation was based
on soft-thresholding of wavelet coefficients which was equivalent to removing Gaussian
noise from an image. Additionally, manipulation of wavelet coefficients caused
undesirable ringing effects in images because of the presence of high frequency features.
To limit the ringing, a selected number of transformed solutions based on different
wavelet functions was averaged. Daubechies_20, Coiflet, Haar, and spline functions were
examples of the wavelet functions used.

3.3 Conclusions

This study examined possible applications of ocean color data merger at local spatial
scales. It investigated integration of data from sensors of different spatial resolutions. It
also determined the ability to generate merged products of the resolution equal to that of
the higher resolution sensor. Inherent in the technique was an option to preserve in the
merged output, mean high-scale ocean color values from the lower resolution coverage.
This corresponded to an ability to enhance the lower-resolution ocean color baseline with
low-scale spatial detail from the higher resolution data. Simultaneously, the baseline was
able to retain its calibration quality. This would provide the useful tools for the
investigation of smaller-size geophysical phenomena and complex environments, such as
coastal zones. Wavelet-based multiresolution analysis was used to extract high-frequency
low-scale features from high resolution imagery and transfer them to lower resolution
scenes.

It would be of interest to apply the wavelet algorithm to the merger of overlapping scenes
between MODIS and SeaWiFS GAC so that SeaWiFS imagery could be enhanced by the
spatial detail contained in MODIS data. A useful application would also be to combine
MODIS or SeaWiFS ocean color products at 1km or 4km resolution with high frequency
spatial information contained in MODIS high-resolution bands, such as 500m and 250m.



4. Local Area Application of Data Merger: Merger of Satellite and In
Situ Measurements

4.1 Introduction

An approach was developed to merge L2 ocean color data with in situ measurements.
The major purpose was to provide a utility to demonstrate changes in remotely sensed
chlorophyll or nLw range and distribution when collected in situ measurements were
overlaid upon local area scenes. The algorithm was intended for use in local area
applications to verify remotely sensed ocean color data and provide a change
visualization tool. The merger of satellite and in situ data was dependent on the spatial
and temporal correlation structure of the ocean color field, which was by itself,
contingent upon local area spatial and temporal variabilities, as shown in Section 1.

Merger was based on the application of the wavelet transform which spatially extended in
situ data point values onto corresponding areas in satellite scenes (Kwiatkowska and
Fargion, 2002a; Mallat, 1989). These areas were defined by a radius of influence and
depended on the geographical location of in situ measurements (Barnes, 1964). The
radius of the area of influence was defined using local texture estimates, such as the
spatial variability classes defined in Section 2. The more irregular the texture was around
the in situ measurement point, the smaller the radius; the smoother the texture, the bigger
the radius. The Hann window function was applied to scale the effects of the in situ data
points away from the area centers (Press et al., 1992). Ultimately, a space-lag correlation
function for a given area spatial-variability class would be used. The degree of change
introduced by in situ measurements onto ocean color satellite scenes also depended on
the established relative accuracies assigned to in situ and satellite data.

The methodology behind the wavelet merger was the following: Because in situ
measurements were screened for quality, they were assumed representative of
generalized ocean color conditions within their area. In situ data points were typically
intended not to affect the local area low-scale spatial variabilities and not to change
shapes of ocean patterns within the scenes. Each in situ observation was therefore
associated with a low-frequency background ocean-color value corresponding to its
coverage point. The low frequency background was extracted by the low-pass wavelet
filter. The original wavelet coefficients of each scene were then replaced with the
coefficients updated with the in situ data point and the point’s values scaled smoothly
towards the edges of the area of influence. The magnitude of the correction also
depended on the estimates of the relative accuracies of satellite and in situ measurements.
The wavelet thus forced the resulting satellite pixels to be interpolations of in situ data
only within the low-resolution representation of the scenes. The high frequency
coefficients of the updated imagery were left unchanged to preserve the original high-
resolution spatial variabilities within the areas of influence and to protect spatial
structures in the scenes.



4.2 Satellite and In Situ Merger Implementation and Results

Merger of satellite and in situ chlorophyll-a concentration observations was analyzed
using SeaWiFS and California Cooperative Oceanic Fisheries Investigation (CalCOFI)
data for the years 1997 and 1998. From the experience with ocean color validation, it was
known that there was a significant scarcity of contemporaneous satellite and in situ
observations, mainly because of the presence of clouds, sun glint, coverage gaps between
satellite orbits, and other satellite viewing and meteorological conditions. Merger was
dependent on the time difference between the satellite overflight and in situ data
collection. The maximum time span between SeaWiFS and in situ observations was set
for 12 hours, although the ultimate time span would be dependent on the local area spatial
variability and the corresponding time-lag correlation of the chlorophyll field. Within the
12-hour time difference, there were just 13 SeaWiFS L2 LAC and HRPT files with
concurrent satellite and CalCOFI measurements for which the merger could be
performed. One file out of the 13 contained three points within the scene. The low
number of matchups was principally caused by the presence of cloud cover.

To limit the cases where small clouds (a few pixels long) and other conditions caused
ocean color pixels to be masked out from the imagery, a gap-filling algorithm was
implemented. Its goal was to preserve spatial patterns of chlorophyll distributions in
ocean color scenes without smoothing. The algorithm was based on an iterative reduction
of the total of high frequencies associated with missing pixels in the analyzed scene. The
high frequency content of a pixel was established by inverting a wavelet transform output
of the scene where the inversion was limited to the result of the forward transform high-
pass filter. The iterations were initialized by filling the gaps with values corresponding to
the lower frequency representation of the scene. To eliminate local minima, a random
perturbation was introduced to the best values for the gap pixels which were found by the
recursive search. The gap-filling approach was implemented in combination with the
satellite and in situ measurement merger to eliminate small clouds within the areas of
influence of in situ data points. This produced an increase in matchups of about 10%.

A sequential processing algorithm was implemented for all in situ data points extracted
from selected SeaBASS records (Werdell and Bailey, 2002) and a corresponding list of
SeaWiFS L2 files. The algorithm processed image subscenes encompassing areas of
influence of consecutive in situ points and fused the points into the images. Examples of
the in situ and satellite data merger are displayed in Fig. 14.



Fig. 14. Merger of CalCOFI in situ chlorophyll measurements with SeaWiFS L2 data
using the wavelet multiresolution approach. The option of filling small cloud gaps in
ocean color satellite data was applied in the bottom left-hand side scene.

4.3 Conclusions

A tool was implemented to investigate differences and local-field distribution changes in
ocean color imagery when overlaying in situ data onto satellite scenes. The
implementation was based on wavelet multiresolution analysis. The wavelets enabled the
spatial spread of in situ values onto the imagery without smoothing the ocean color fields.
Spatial variability and chlorophyll structures were also preserved. The merger application
was designed to be ultimately dependent on local area spatial and temporal variabilities
and data correlations. During the study, it was determined that concurrent in situ and
satellite observations were scarce, even when data from recurrent oceanic surveys were
applied. Therefore, it was intended that in situ data were presently used for validation of
ocean color imagery and not for broad application in the merger efforts to complement
satellite data.
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